Философские аспекты специальной теории относительности. Реферат: Философские аспекты теории относительности А. Эйнштейна. Понятие бесконечности не определено в общенаучном понятии до сих пор. Это не познаваемое в принципе в величине безотносительное понят

Едва ли найдется другая физическая теория, которая бы столь часто "опровергалась", как специальная теория относительности. Ее критиков можно разделить на две группы. Представители первой группы выступают от имени физики. Как правило, они либо возрождают учение об эфире, либо отрицают инвариантность скорости света в вакууме. Представители второй группы выступают от имени философии. О физике было достаточно сказано ранее, теперь мы обратимся непосредственно к философии.

Любой физик не в состоянии отгородиться от философии. Это обстоятельство крайне редко учитывается авторами научных и учебных книг по физике.

При анализе воззрений Эйнштейна, Рейхенбаха и Пуанкаре автору уже приходилось обращаться к философским воззрениям физиков. Рейхенбах – неопозитивист. В качестве такового он придает определяющее значение эксперименту, абсолютизируя его значимость.

Пуанкаре – конвенционалист. Он придает первостепенное значение конвенциям, условным соглашениям. Для него они непреодолимы.

Эйнштейн – критический концептуалист. Он рассуждает, прежде всего, о концептах, отмечая, среди прочего, по нашему мнению, несколько категорично их независимость от эксперимента.

На первый взгляд, наличие различия философских позиций выдающихся ученых кажется непонятным. Почему они придерживаются различных позиций? Потому что каждый человек своеобразен. Любой вид знания осмысливается людьми неодинаково.

В начале XX в. Эйнштейн жил в Германии, в которой среди философов доминировали неокантианцы и феноменологи. Те и другие высказывались критически в адрес специальной теории относительности . Неокантианцы, в частности, П. Наторп, исходили из положения Канта, согласно которому пространство и время являются необходимыми условиями созерцания всех, в том числе физических, явлений. Поэтому они отвергали воззрения Эйнштейна, согласно которым пространство и время относительно физической динамики не первичны, а вторичны.

Феноменологи, в частности, О. Беккер, были озабочены другим обстоятельством. Они стремились во всех своих утверждениях руководствоваться жизненной практикой. Феноменологи полагали, что нет никаких препятствий для конституирования жизненно важного понятия абсолютной одновременности. Но Эйнштейн отвергал такую возможность.

В Германии воззрения Эйнштейна встретили многолетнее сопротивление со стороны приверженцев методического конструктивизма, которые применительно к физике интерпретировали его в качестве протофизики. Наиболее крупными фигурами этого философского направления являлись Г. Динглер и П. Лоренцен . Оба считали, что Эйнштейн, выстраивая свою теорию, не был последовательным, ибо у него нет теории времени и пространства. А она должна быть задана. Но в таком случае, дескать, не обойтись без евклидовой геометрии. Безукоризненное построение теории предполагает некоторые предпосылки, т.е. протофизику. Как видим, конструктивисты наследовали убеждение Канта о предпосылках теории.

Представитель философии жизни знаменитый Анри Бергсон также относится к Эйнштейну критически . Их противостояние довольно знаменательно уже постольку, поскольку Бергсон профессионально занимался проблемой времени. Его более всего интересовало не столько физическое, сколько биологическое время. Физика, полагал он, покоится на замене времени- творчества временем-протяжением, что неудовлетворительно. Стремление Бергсона осмыслить физическое время с позиций биологического времени не привело к заметным успехам.

Довольно противоречиво складывались отношения к специальной теории относительности в нашей стране, где длительное время в философии господствовал диалектический материализм . Знаменательной вехой в этой истории стала статья В. А. Фока . До ее появления критики теории относительности во главе со своим неофициальным лидером А. А. Максимовым чувствовали себя довольно вольготно . Основная линия критики Эйнштейна состояла в отождествлении релятивистской механики с философским релятивизмом (все относительно, необъективно). Но это принципиально различные концепции. Философским релятивистом Эйнштейн никогда не был.

После статьи Фока возобладала другая линия. Теперь доказывали, что специальная теория относительности свидетельствует в пользу диалектического материализма, а сам Эйнштейн является если не диалектическим, то, по крайней мере, стихийным материалистом.

Около двух десятков лет довольно популярными были воззрения А. Д. Александрова. По его мнению, специальная теория относительности является теорией "абсолютного пространства- времени, определенного самой материей, – теория, в которой относительность совершенно явно и необходимо занимает положение подчиненного, вторичного аспекта" .

Это утверждение едва ли можно назвать корректным. Во-первых, вводится отсутствующий в физике концепт материи. Видимо, имеется в виду вся совокупность физических процессов. Во-вторых, они не могут определять пространство-время, ибо по определению оно является их собственной стороной. В-третьих, пространство-время не является самостоятельным образованием. Как отмечалось ранее, понятие пространства- времени фиксирует всего лишь связь времени и пространства. В-четвертых, некорректно термин "абсолютный" противопоставляется термину "относительный". Абсолютное – значит, ни от чего не зависящее. Александров же считал, что пространство-время зависит от материи. В-пятых, нет оснований для снисходительной характеристики относительного. Оно не является вторичным по отношению ни к абсолютному, ни к инвариантному. Интервал инвариантен, а входящие в его состав протяженности и длительности относительны, но в этом соотношении нет первичного и вторичного.

В дальнейшем абсолютное большинство физиков, характеризующих специальную теорию относительности, предпочитали не упоминать философские направления. Философы же стали освобождаться от диалектико-материалистического наваждения лишь в 1990-е гг.

Остается заметить, что освобождение от ограничений какого- либо философского направления должно приветствоваться. Но если оно сопровождается игнорированием познавательных ориентиров, то налицо СПАМ.

Выводы

  • 1. Физик не в состоянии избежать философских выводов, своеобразных обобщений того, что он знает.
  • 2. Всегда необходимо стремиться к гармонии философии и физики. Она наступает лишь в случае, если философия не вносится в физику как чуждый ей элемент, а выступает в качестве метанаучного восхождения в ней самой.

Теория относительности была первой физической теорией, которая радикально изменила взгляды ученых на пространство, время и движение. Если раньше пространство и время рассматривались обособленно от движения материальных тел, а само движение независимо от систем отсчета, т.е. как абсолютное, то с возникновением специальной теории относительности было твердо установлено:

Всякое движение может описываться только по отношению к другим телам, которые могут приниматься за системы отсчета, связанные с определенной системой координат;

Пространство и время тесно взаимосвязаны друг с другом, ибо только совместно они определяют положение движущегося тела. Именно поэтому время в теории относительности выступает как четвертая координата для описания движения, хотя и отличная от пространственных координат;

Специальная теория относительности показала, что одинаковость формы законов механики для всех инерциальных, или галилеевых, систем отсчета сохраняет свою силу и для законов электродинамики, но только для этого вместо преобразований Галилея используются преобразования Лоренца;

При обобщении принципа относительности и распространении его на электромагнитные процессы постулируется постоянство скорости света, которое никак не учитывается в механике.

Общая теория относительности отказывается от такого ограничения, так же как и от требования рассматривать лишь инерциальные системы отсчета, как это делает специальная теория. Благодаря такому глубокому обобщению она приходит к выводу: все системы отсчета являются равноценными для описания законов природы.

Выявление алгоритма развития исхода из существующих концепций современного естествознания позволяет зафиксировать «взаимодействие» как движущую силу развития природы. С точки зрения экономической науки взаимодействие двух элементов системы отображается в экономические отношения между двумя экономическими субъектами, возникновение которых оказывает непосредственное влияние на развитие экономики. В то же время классификация взаимодействия на близкодействие и дальнодействие также находит свое отражение в экономической науке при различении микро- и макроэкономики.

Приведенное выше интуитивное определение системы достаточно для того, чтобы отличать системы от таких совокупностей предметов и явлений, которые системами не являются. В нашей литературе для названия последних не существует специального термина. Поэтому мы будем обозначать их заимствованным из англоязычной литературы термином агрегаты. Кучу камней вряд ли кто-либо назовет системой, в то время как физическое тело, состоящее из большого числа взаимодействующих молекул, или химическое соединение, образованное из нескольких элементов, а тем более живой организм, популяцию, вид и другие сообщества живых существ всякий будет интуитивно считать системой. Чем мы руководствуемся при отнесении одних совокупностей к системам, а других - к агрегатам? Очевидно, что в первом случае мы замечаем определенную целостность, единство составляющих систему элементов, во втором случае такое единство и взаимосвязь отсутствуют и установить их трудно, поэтому речь должна идти о простой совокупности, или агрегате, элементов.

Таким образом, для системного подхода характерно именно целостное рассмотрение, установление взаимодействия составных частей или элементов совокупности, не сводимость свойств целого к свойствам частей.

На протяжении всего изложения мы имеем дело с многочисленными физическими, химическими, биологическими и экологическими системами, свойства которых нельзя объяснить свойствами их элементов. В отличие от этого свойства простых совокупностей определяются свойствами их частей. Так, например, длина тела, состоящего из нескольких частей, и его вес могут быть найдены суммированием соответственно длины и весов его частей. В отличие от этого температуру воды, полученную путем смешения разных ее объемов, нагретых в разной степени, нельзя вычислить таким же способом. Нередко поэтому говорят, что свойства простых совокупностей аддитивны, т.е. суммируются или складываются из свойств или величин их частей, а свойства систем как целостных образований неаддитивны.

Следует, однако, отметить, что различие между системами и агрегатами, или простыми совокупностями, имеет неабсолютный, а относительный характер и зависит от того, как подходят к исследованию совокупности. Ведь даже кучу камней можно рассматривать как некоторую систему, элементы которой взаимодействуют по закону всемирного тяготения. Тем не менее здесь мы не обнаруживаем возникновения новых целостных свойств, которые присущи настоящим системам. Этот отличительный признак систем, заключающийся в наличии у них новых системных свойств, возникающих вследствие взаимодействия составляющих их частей или элементов, всегда следует иметь в виду при их определении.

В последние годы предпринималось немало попыток дать логическое определение понятия системы. Поскольку в логике типичным является способ определения через ближайший род и видовое отличие, постольку в качестве родового понятия обычно выбирались наиболее общие понятия математики и даже философии. В современной математике таким понятием считается понятие множества, введенное в конце прошлого века немецким математиком Георгом Кантором (1845-1918) и обозначающее любую совокупность объектов, обладающих некоторым общим свойством. Поэтому Р.Фейджин и А.Холл воспользовались понятием множества для логического определения системы.

Система - это множество объектов вместе с отношениями между объектами и между их атрибутами (свойствами).

Такое определение нельзя назвать корректным хотя бы потому, что самые различные совокупности объектов можно назвать множествами и для многих из них можно установить определенные отношения между объектами, так что видовое отличие для систем (differentia specifica) не указано. Дело, однако, не столько в формальной некорректности определения, сколько в его содержательном несоответствии действительности. В самом деле, в нем не отмечается, что объекты, составляющие систему, взаимодействуют между собой таким образом, что обусловливают возникновение новых, целостных системных свойств. По-видимому, такое предельно широкое понятие, как система, нельзя определить чисто логически через другие понятия. Его следует признать исходным и неопределяемым понятием, содержание которого можно объяснить с помощью примеров. Именно так обычно поступают в науке, когда приходится иметь дело с исходными, первоначальными ее понятиями, например, с множеством в математике или массой и зарядом в физике.

Для лучшего понимания природы систем необходимо рассмотреть сначала их строение и структуру, а затем их классификацию.

Строение системы характеризуется теми компонентами, из которых она образована. Такими компонентами являются: подсистемы, части или элементы системы в зависимости оттого, какие единицы принимаются за основу деления.

Подсистемы составляют наибольшие части системы, которые обладают определенной автономностью, но в то же время они подчинены и управляются системой. Обычно подсистемы выделяются в особым образом организованные системы, которые называются иерархическими.

Элементами часто называют наименьшие единицы системы, хотя в принципе любую часть можно рассматривать в качестве элемента, если отвлечься от их размера.

В качестве типичного примера можно привести человеческий организм, который состоит из нервной, дыхательной, пищеварительной и других подсистем, часто называемых просто системами. В свою очередь, подсистемы содержат в своем составе определенные органы, которые состоят из тканей, а ткани - из клеток, а клетки - из молекул. Многие живые и социальные системы построены по такому же иерархическому принципу, где каждый уровень организации, обладая известной автономностью, в то же время подчинен предшествующему, более высокому уровню. Такая тесная взаимосвязь, взаимодействие между различными компонентами обеспечивают системе как целостному, единому образованию наилучшие условия для существования и развития.

Структурой системы называют совокупность тех специфических взаимосвязей и взаимодействий, благодаря которым возникают новые целостные свойства, присущие только системе и отсутствующие у отдельных ее компонентов. В западной литературе такие свойства называют эмерджентными, возникающими в результате взаимодействия и присущими только системам. В зависимости от конкретного характера взаимодействия между компонентами мы различаем определенные типы систем: электромагнитные, атомные, ядерные, химические, биологические и социальные. В рамках этих типов можно, в свою очередь, рассматривать отдельные видь! систем. В принципе к каждому отдельному объекту можно подойти с системной точки зрения, поскольку он представляет собой определенное целостное образование, способное к самостоятельному существованию. Так, например, молекула воды, образованная из двух атомов водорода и одного атома кислорода, представляет собой систему, компоненты которой связаны силами электромагнитного взаимодействия. Весь окружающий нас мир, его предметы, явления и процессы оказываются совокупностью самых разнообразных по конкретной природе и уровню организации систем. Каждая система в этом мире взаимодействует с другими системами.

Для более тщательного исследования обычно выделяют те системы, с которыми данная система взаимодействует непосредственно и которые называют окружением или внешней средой системы. Все реальные системы в природе и обществе являются открытыми и, следовательно, взаимодействующими с окружением путем обмена веществом, энергией и информацией. Представление о закрытой, или изолированной, системе является далеко идущей абстракцией и потому не отражающей адекватно реальность, поскольку никакая реальная система не может быть изолирована от воздействия других систем, составляющих ее окружение. В неорганической природе открытые системы могут обмениваться с окружением либо веществом, как это происходит в химических реакциях, либо энергией, когда система поглощает свежую энергию из окружения и рассеивает в ней «отработанную» энергию в виде тепла. В живой природе системы обмениваются с окружением, кроме вещества и энергии, также и информацией, посредством которой происходит управление, а также передача наследственных признаков от организмов к их потомкам. Особое значение обмен информацией приобретает в социально-экономических и культурно-гуманитарных системах, где он служит основой для всей коммуникативной деятельности людей. 1

Различение систематичности структурной организации природы или экономики позволяет зафиксировать определенное состояние объекта исследования естествознания или экономической науки. В ходе дальнейшего исследования знания об этом состоянии обеспечивают выявление организации связей между различными предметами исследования на основе использования принципов суперпозиции, неопределенности, дополнительности как инструментария для проведения исследования в рамках естествознания или экономической науки.

Классификация систем может производиться по самым разным основаниям деления. Прежде всего все системы можно разделить на материальные и идеальные, или концептуальные. К материальным системам относится подавляющее большинство систем неорганического, органического и социального характера. Все материальные системы, в свою очередь, могут быть разделены на основные классы соответственно той форме движения материи, которую они представляют. В связи с этим обычно различают географические, физические, химические, биологические, геологические, экологические и социальные системы. Среди материальных систем выделяют также искусственные, специально созданные обществом, технические и технологические системы, служащие для производства материальных благ.

Все эти системы называются материальными потому, что их содержание и свойства не зависят от познающего субъекта, который может все глубже, полнее и точнее познавать их свойства и закономерности в создаваемых им концептуальных системах. Последние называются идеальными потому, что представляют собой отражение материальных, объективно существующих в природе и обществе систем.

Наиболее типичным примером концептуальной системы является научная теория, которая выражает с помощью своих понятий, обобщений и законов объективные, реальные связи и отношения, существующие в конкретных природных и социальных системах.

Системный характер научной теории выражается в самом ее построении, когда отдельные ее понятия и суждения не просто перечисляются как попало, а объединяются в рамках определенной целостной структуры. В этих целях обычно выделяются несколько основных, иди первоначальных, понятий, на основе которых по правилам логики определяются другие - производные, или вторичные, понятия. Аналогично этому среди всех суждений теории выбираются некоторые исходные, или основные, суждения, которые в математических теориях называются аксиомами, а в естественно-научных - законами или принципами. Так, например, в классической механике такими основными суждениями являются три основных закона механики, в специальной теории относительности - принципы постоянства скорости света и относительности. В математизированных теориях физики соответствующие законы часто выражаются с помощью систем уравнений, как это осуществлено английским физиком Д.К. Максвеллом (1831-1879) в его теории электромагнетизма. В биологических и социальных теориях обычно ограничиваются словесными формулировками законов. На примере эволюционной теории Ч.Дарвина мы видим, что ее основное содержание можно выразить с помощью трех основных принципов или даже единственного принципа естественного отбора.

Все наше знание не только в области науки, но и в других сферах деятельности мы стремимся определенным образом систематизировать, чтобы стала ясной логическая взаимосвязь отдельных суждений, а также всей структуры знания в целом. Отдельное, изолированное суждение не представляет особого интереса для науки. Только тогда, когда его удается логически связать с другими элементами знания, в частности с суждениями теории, оно приобретает определенный смысл и значение. Поэтому важнейшая функция научного познания состоит как раз в систематизации всего накопленного знания, при которой отдельные суждения, выражающие знание о конкретных фактах, объединяются в рамках определенной концептуальной системы.

Другие классификации в качестве основания деления рассматривают признаки, характеризующие состояние системы, ее поведение, взаимодействие с окружением, целенаправленность и предсказуемость поведения и другие свойства.

Наиболее простой классификацией систем является деление их на статические и динамические, которое в известной мере условно, так как все в мире находится в постоянном изменении и движении. Поскольку, однако, во многих явлениях мы различаем статику и динамику, то кажется целесообразным рассматривать специально также статические системы.

Среди динамических систем обычно выделяют детерминистские и стохастические (вероятностные) системы. Такая классификация основывается на характере предсказания динамики поведения систем. Как отмечалось в предыдущих главах, предсказания, основанные на изучении поведения детерминистских систем, имеют вполне однозначный и достоверный характер. Именно такими системами являются динамические системы, исследуемые в механике и астрономии. В отличие от них стохастические системы, которые чаще всего называют вероятностно-статистическими, имеют дело с массовыми или повторяющимися случайными событиями и явлениями. Поэтому предсказания в них имеют недостоверный, а лишь вероятностный характер.

По характеру взаимодействия с окружающей средой различают, как отмечалось выше, системы открытые и закрытые (изолированные), а иногда выделяют также частично открытые системы. Такая классификация носит в основном условный характер, ибо представление о закрытых системах возникло в классической термодинамике как определенная абстракция, которая оказалась не соответствующей объективной действительности, в которой подавляющее большинство, если не все системы, являются открытыми.

Многие сложноорганизованные системы, встречающиеся в социальном мире, являются целенаправленными, т.е. ориентированными на достижение одной или нескольких целей, причем в разных подсистемах и на разных уровнях организации эти цели могут быть различными и даже прийти в конфликт друг с другом.

Классификация систем дает возможность рассмотреть множество существующих в науке систем ретроспективно и поэтому не представляет для исследователя такого интереса, как изучение метода и перспектив системного подхода в конкретных условиях его применения. 1

Определение в последовательности организации отслеживания связей между различными состояниями природных явлений необходимости учета фактора времени или же его отсутствия позволяет выявлять динамические или статические закономерности в природе. Отсюда по аналогии познания экономических отношений с учетом фактора времени или без его учета представляет собой динамическое или статическое рассмотрение закономерностей экономики.

физическая теория, основной смысл которой состоит в утверждении: в физическом мире все происходит благодаря структуре пространства и изменению его кривизны. Различают частную и общую теорию относительности.

В основе частной теории, сформулированной А. Эйнштейном в 1905 г., лежат два постулата: 1. Все законы физики имеют один и тот же вид во всех инерциональных системах отчета. 2. Во всех физических системах скорость света постоянна.

Развивая эту теорию, в 1918 г. Г. К4инковский показал, что свойства нашей Вселенной следует описывать вектором в четырехмерном пространстве-времени. В 1916 г. Эйнштейн сделал следующий шаг и опубликовал общую теорию относительности (ОТО) - фактически теорию гравитации. Причиной тяготения, согласно этой теории, является искривление пространства вблизи массивных тел. В качестве математического аппарата в ОТО использован тензорный анализ и общая риманова геометрия.

Из теории относительности следует ряд важных следствий. Во-первых, закон эквивалентности массы и энергии. Во-вторых, отказ от гипотез о мировом эфире и абсолютных пространстве и времени. В-третьих, эквивалентность гравитационной и инерционной масс. Теория относительности нашла многочисленные экспериментальные подтверждения и используется в космологии, физике элементарных частиц, ядерной технике и др.

Отличное определение

Неполное определение ↓

спец. (СТО) и общая (ОТО) теории относительности разработаны А.Эйнштейном соответственно в 1905 и 1916 гг. В основе ОТО лежат два постулата (принципа): 1) Принцип относительности Эйнштейна (все физ. процессы в инерциальных системах протекают совершенно одинаково); 2) Принцип постоянства скорости света (скорость света во всех инерциальных системах одинакова по всем направлениям и не зависит от движения источника и приемника света. Скорость света в вакууме - максимальная скорость, существующая в природе). Из этих постулатов вытекает ряд следствий: масса тела растет с ростом скорости его движения; время в разных системах течет по-разному; время и пространство взаимосвязаны и образуют четырехмерный мир (его свойства не зависят от материи), масса и энергия связаны формулой E = mc2, новая формула сложения скоростей (вместо формулы Галилея) и др. В ОТО принцип относительности был распространен на все системы. Это следовало из эквивалентности инерционной и гравитационной масс, а ОТО стала общей теорией тяготения. Принцип же постоянства скорости света был ограничен областями, где гравитационными силами можно пренебречь. Из ОТО следовал ряд выводов: 1) Свойства пространствавремени зависят от движения материи. Материальные тела искривляют пространство-время, создавая тем самым гравитационные поля. 2) Луч света, обладая инерционной, а след-но, и гравитационной массой, должен искривляться в поле тяготения. 3) Частота света в результате действия поля тяготения должна изменяться. СТО и ОТО наряду с квантовой механикой лежат в основе совр. физики. Ф.М.Дягилев

Отличное определение

Неполное определение ↓

физическая теория, в развитии которой необходимо различать 3 этапа. 1) Принцип относительности классической механики (Галилей, Ньютон) гласит: во всех равномерно и прямолинейно движущихся системах механические процессы протекают точно так же, как и в покоящихся. Следовательно, прямолинейное равномерное движение соответствующей системы не может быть определено, установлено без помощи тел, находящихся вне системы. Так, напр., если в прямолинейно и равномерно движущемся железнодорожном вагоне подбросить вертикально вверх мяч, то он снова упадет вниз по перпендикуляру, точно так же, как если бы вагон стоял. Напротив, наблюдателю, стоящему на железнодорожной насыпи, траектория представляется в виде параболы. Исходя из формы наблюдаемой извне и зафиксированной (сфотографированной) параболы, можно определить скорость движения поезда по отношению к местонахождению наблюдателя. Подобным образом обстоит дело с движением небесных тел во Вселенной. Попытки (Физо в 1849, Майкельсон в 1881, В. Вин и др.) при помощи электромагнитных (оптических) средств создать абсолютную систему отношений в мировом пространстве (нечто сходное с покоящимся "эфиром" как абсолютным, неподвижным пространством - Ньютон) окончились неудачно. 2) В специальной теории относительности Эйнштейна (1905) создано новое для физики понятие времени. Время определяется уже не через вращение Земли, а через распространение света (300 000 км/с). Это время так тесно связано с пространственными измерениями, что вместе они образуют пространство, имеющее четыре измерения. Став координатой, время теряет свой абсолютный характер, становится только "относительной" величиной в системе связей. Было найдено такое понятие пространственного времени, которое соответствует всем физическим фактам. 3) Всеобщая теория относительности (Энштейн, 1916) устанавливает, что сила тяжести и ускорение равноценны, что в соответствии с миром Минковского (1908) трехмерная система координат классической физики дополняется временем как четвертой координатой (см. Континуум). Она расширяет наблюдение, включая рассмотрение равномерно-ускоренных и вращающихся систем, что требует сложного математического аппарата; необходимая для этого геометрия впервые определяется благодаря данной физической теории относительности (см. Метагеометрия). Теория относительности разрешает проблемы, которые возникают из наблюдения за распространением электромагнитных и оптических явлений, специально - за распространением света в движущихся системах. Результаты наблюдений, истолкованных с помощью теории относительности, отклоняются от результатов наблюдений классической механики и электродинамики только там, где речь идет о больших скоростях и огромных расстояниях.

Отличное определение

Неполное определение ↓

физическая теория пространства и времени, сформулированная Эйнштейном в 1905 (специальная теория) и в 1916. (общая теория). Она исходит из т. наз. классического принципа относительности Галилея - Ньютона, согласно к-ро-му механические процессы происходят единообразно в инерциальных системах отсчета, движущихся одна относительно др. прямолинейно и равномерно. Развитие оптики и электродинамики привело к выводу о применимости этого принципа к распространению света, т. е. электромагнитных волн (независимость скорости света от движения системы) и к отказу от понятия абсолютного времени, абсолютной одновременности и абсолютного пространства. Согласно специальной О. т., ход времени зависит от движения системы, и интервалы времени (и пространственные масштабы) изменяются т. обр., что скорость света постоянна в любой системе отсчета, не меняется в зависимости от ее движения. Из этих посылок было выведено большое число физических заключений, к-рые обычно именуются “релятивистскими”, т. е. основанными на О. т. Среди них особое значение приобрел закон взаимосвязи массы и энергии, согласно к-рому масса тела пропорциональна его энергии и к-рый широко используется в совр. ядерной физике. Развивая и обобщая специальную О. т., Эйнштейн пришел к общей О. т., к-рая по своему осн. содержанию является новой теорией тяготения. Она основана на предположении, что четырехмерное пространство-время, в к-ром действуют силы тяготения, подчиняется соотношениям неевклидовой геометрии. На плоскости эти соотношения могут быть наглядно представлены в качестве обычных евклидовых соотношений на поверхностях, обладающих кривизной. Эйнштейн рассматривал отступление геометрических соотношений в четырехмерном пространстве-времени от евклидовых как искривление пространства-времени. Он отождествил такое искривление с действием сил тяготения. Подобное предположение было подтверждено в 1919 астрономическими наблюдениями, показавшими, что луч звезды как прообраз прямой линии искривляется вблизи Солнца под действием гравитационных сил. Общая О. т. не приобрела до сих пор того характера законченной и бесспорной физической концепции, каким обладает специальная теория. Философские выводы О. т. подтверждают и обогащают идеи диалектического материализма. О. т. показала неразрывную связь между пространством и временем (она выражена в едином понятии пространственно-временного интервала), а также между материальным движением, с одной стороны, и его пространственно-временными формами существования - с др. Определение пространственно-временных свойств в зависимости от особенностей материального движения (“замедление” времени, “искривление” пространства) выявило ограниченность представлений классической физики об абсолютном пространстве и времени, неправомерность их обособления от движущейся материи. О. т. выступила как рациональное обобщение классической механики и распространение принципов механики на область движения тел со скоростями, приближающимися к скорости света. Идеалистические и позитивистские направления буржуазной философии, подменяя понятие системы отсчета “позицией наблюдателя”, пытались использовать О. т. для утверждения субъективного характера науки и зависимости физических процессов от наблюдения. Однако О. т., или релятивистскую механику, не следует смешивать с философским релятивизмом, отрицающим объективность научного знания. О. т. является более адекватным (Адекватность), чем классическая механика, отображением действительности.

Отличное определение

Неполное определение ↓

теория пространства и времени, согласно к-рой они суть лишь относит. "стороны" единой формы существования материи – пространства-времени. Различают частную (или специальную) и общую О. т. (ОТО). Общая О. т. есть теория пространства-времени, объясняющая через его структуру всемирное тяготение (поэтому ее называют также теорией тяготения). Предпосылки О. т. Учение о пространств. формах и отношениях сложилось в древности и было математически оформлено в виде эвклидовой геометрии. Физика восприняла ее в готовом виде. Время вошло в общие законы механики, сформулированные Галилеем и Ньютоном. Представления классич. физики о пространстве и времени отражали прежде всего общие законы взаимного расположения и движения твердых тел. В частности, представление об абсолютном, всюду одинаково текущем времени вполне им отвечало. Согласно второму закону Ньютона, в принципе нет ограничений для скорости, к-рую можно придать телу. Поэтому координация во времени путем передачи воздействий ("сигналов") устанавливается с любой точностью (можно в принципе сверять времена в разных телах с любой точностью), откуда и следует, что время всюду течет одинаково (распространенное мнение, что для этого необходима мгновенная, т.е. с бесконечной скоростью, передача сигналов, ошибочно). Законы механики Галилея - Ньютона формулируются для т.н. инерциальных систем отсчета. В ньютоновской механике выполняется принцип относительности Галилея, согласно к-рому законы механич. явлений одинаковы по отношению ко всем инерциальным системам. Вообще, для нек-рого класса явлений? и для нек-рого класса систем S? выполняется принцип относительности, или, др. словами, эти системы равноправны в отношении данных явлений, если законы явлений? одинаковы в системах S, т.е. когда в двух системах S?, S" для явлений??, ?" одного типа осуществлены одинаковые (относительно этих систем) условия, то эти явления будут течь относительно этих систем совершенно одинаково. Математич. выражение законов этих явлений в этих системах одно и то же, т.е. оно инвариантно (неизменно) относительно перехода от одной системы к другой, выражающегося соответствующим преобразованием координат и др. величин. После того как Максвелл в 60-х гг. 19 в. сформулировал осн. законы электромагнитных явлений, возникла проблема выявления законов электродинамики движущихся тел по отношению к любой инерциальной системе отсчета. Опыты приводили к результатам, противоречащим тому, что "следовало ожидать". Особенно важную роль сыграл опыт Майкельсона (1881–87), не обнаруживший ожидаемой зависимости скорости света от направления его распространения по отношению к направлению движения Земли. Математич. выражение противоречия дал Лоренц (1904), показав, что уравнения Максвелла инвариантны по отношению к преобразованиям (т.н. преобразованиям Лоренца), отличным от преобразований Галилея, относительно к-рых инвариантны законы ньютоновской механики. Разрешение противоречия было осуществлено Эйнштейном в работе "К электродинамике движущихся тел" (А. Einstein, Zur Elektrodynamik bewegter K?rper, 1905) путем построения новой теории пространства и времени – частной О. т. и, соответственно, новой механики – "релятивистской", в отличие от ньютоновской – классической. Независимо к тем же в основном результатам пришел А. Пуанкаре. Частная О. т. Эйнштейн основал свою теорию на след. положениях (к-рые приводятся в несколько дополненной формулировке): I. Существуют инерциальные системы отсчета. II. Геометрия пространства эвклидова. III. Принцип относительности: все инерциальные системы равноправны в отношении всех физич. явлений. IV. Закон постоянства скорости света: относительно всех инерциальных систем свет распространяется с одинаковой скоростью с. Первые три положения заимствованы из классич. теории, только принцип относительности понимается обобщенно; четвертое является обобщением данных опыта (опыт Майкельсона и др.) и вполне согласуется с теорией электромагнетизма. Из положения II, IV чисто математически вытекает, что для любых инерциальных систем S, S? координаты х, у, z, x?, y?, z и времена t, t? связаны преобразованием Лоренца. В частности, если оси координат x, x? в системах S и S? параллельны и ось x направлена по движению S? относительно S, то (при соответствующем выборе масштабов) разности координат и времени в системах S и S? для любых двух событий - мгновенно-точечных явлений Р1, ?2 связаны формулами: где? - скорость S? относительно S. Из этих соотношений вытекают след. выводы: (1) Системы могут двигаться друг относительно друга со скоростью, меньшей скорости света (т.к. при??c формулы теряют смысл). (2) Два события, одновременные в S (t12=0), но происходящие в точках с разными координатами x (x12?0), не одновременны в S? (t?12?0). Более того, событие Р1, предшествующее Р2 относительно системы S, может следовать за ним относительно S?. Именно, если t12>0, но меньше?/c2 · x12, то t?12

Специальная теория относительности была первой физической теорией, которая радикально изменила взгляды ученых на пространство, время и движение. Если раньше пространство и время рассматривались обособленно от движения материальных тел, а само движение независимо от систем отсчета, т.е. как абсолютное, то с возникновением специальной теории относительности было твердо установлено:

    всякое движение может описываться только по отношению к другим телам, которые могут приниматься за системы отсчета, связанные с определенной системой координат;

    пространство и время тесно взаимосвязаны друг с другом, ибо только совместно они определяют положение движущегося тела. Именно поэтому время в теории относительности выступает как четвертая координата для описания движения, хотя и отличная от пространственных координат;

    одинаковость формы законов механики для всех инерциальных систем отсчета сохраняет свою силу и для законов электродинамики, но только для этого вместо преобразований Галилея используются преобразования Лоренца;

    при обобщении принципа относительности и распространении его на электромагнитные процессы, постулируется постоянство скорости света, которое никак не учитывается в механике.

Общая теория относительности отказывается от такого ограничения, также как и от требования рассматривать лишь инерциальные системы отсчета, как это делает специальная теория. Благодаря такому глубокому обобщению она приходит к выводу:все системы отсчета являются равноценными для описания законов природы .

С философской точки зрения наиболее значительным результатом общей теории относительности является установление зависимости пространственно-временных свойств окружающего мира от расположения и движения тяготеющих масс.

Именно благодаря воздействию тел с большими массами происходит искривление путей движения световых лучей. Следовательно, гравитационное поле, создаваемое такими телами, определяет в конечном итоге пространственно-временные свойства мира. В специальной теории относительности абстрагируются от действия гравитационных полей и поэтому ее выводы оказываются применимыми лишь для небольших участков пространства-времени. Концепцию относительности, лежащую в основе общей и специальной физической теории, не следует смешивать с принципом относительности наших знаний, в том числе и в физике. Если первая из них касается движения физических тел по отношению к разным системам отсчета, т.е. характеризует процессы, происходящие в объективном, материальном мире, то вторая относится к росту и развитию нашего знания, т.е. касается мира субъективного, процессов изменения наших представлений об объективном мире.

Преемственная связь между общей и специальной теорий относительности выражается принципом соответствия – методологическим принципом, устанавливающим связь между старыми и новыми теориями.

      1. Симметрия пространства и времени и законы сохранения

Связь между симметрией пространства и законами сохранения установила немецкий математик Эмми Нетер (1882–1935). Она сформулировала и доказала фундаментальную теорему математической физики, названную ее именем, из которой следует, что из однородности пространства и времени вытекают законы сохранения соответственно импульса и энергии, а из изотропности пространства – закон сохранения момента импульса.

Эта теорема выражает принцип инвариантности относительно сдвигов в пространстве и во времени , т.е. параллельных переносов начала координат, и начала отсчета времени:смещение во времени и в пространстве не влияет на протекание физических процессов. Указанный принцип является следствиемоднородности пространства и времени:

    однородность пространства заключается в том, что при параллельном переносе в пространстве замкнутой системы тел как целого ее физические свойства и законы движения не изменяются, иными словами, не зависят от выбора положения начала координат инерциальной системы отсчета.

    однородность времени означает инвариантность физических законов относительно выбора начала отсчета времени. Например, при свободном падении тела в поле силы тяжести его скорость и пройденный путь зависят лишь от начальной скорости и продолжительности свободного падения тела и не зависят от того, когда тело начало падать.

С однородностью пространства связан закон сохранения импульса: импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени . Закон сохранения импульса справедлив не только в классической физике, хотя он и получен как следствие законов Ньютона. Эксперименты доказывают, что он выполняется и для замкнутых систем микрочастиц, подчиняющихся законам квантовой механики. Импульс сохраняется и для незамкнутой системы, если геометрическая сумма всех внешних сила равна нулю. Закон сохранения импульса носит универсальный характер и является фундаментальным законом природы.

С однородностью времени связан закон сохранения механической энергии : в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т.е. не изменяется со временем. Консервативные силы действуют только в потенциальных полях, характеризующихся тем, что работа, совершаемая действующими силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положений. Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипативной; например, сила трения.

Механические системы, на тела которых действуют только консервативные силы (внутренние и внешние), называются консервативными системами. Закон сохранения механической энергии можно сформулировать еще и так: в консервативных системах полная механическая энергия сохраняется . В консервативных системах могут происходить лишь превращения кинетической энергии в потенциальную энергию и обратно в эквивалентных количествах.

В диссипативных системах механическая энергия постепенно уменьшается из-за преобразования ее в другие (немеханические) формы энергии. Этот процесс называется диссипацией, или рассеянием энергии.

В системе, в которой действуют консервативные и диссипативные силы, например силы трения, полная механическая энергия системы не сохраняется. Следовательно, для такой системы закон сохранения механической энергии не выполняется. Однако при убывании механической энергии всегда возникает эквивалентное количество энергии другого вида. Таким образом, энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой. В этом заключается физическая сущность закона сохранения и превращения энергии, сущность неуничтожения материи и ее движения, поскольку энергия – универсальная мера различных форм движения и взаимодействия.

Закон сохранения энергии – результат обобщения многих экспериментальных данных. Как мы уже говорили, идея этого закона принадлежит М.В. Ломоносову, изложившему закон сохранения материи и движения, а количественная его формулировка дана немецкими учеными Ю. Майером и Г. Гельмгольцем.

Обратимся еще к одному свойству симметрии пространства – его изотропности . Изотропность пространства означает инвариантность физических законов относительно выбора направлений осей координат системы отсчета (относительно поворота замкнутой системы в пространстве на любой угол).

Из изотропности пространства следует фундаментальный закон природы – закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т. е. не изменяется с течением времени.

Выявление различных симметрий в природе, а иногда и постулирование их стало одним из методов теоретического исследования свойств микро- , макро- и мегамира. Возросла в связи с этим роль весьма сложного и абстрактного математического аппарата – теории групп – наиболее адекватного и точного языка для описания симметрии.

Ибо методологически неверно, не имея определения базового понятия “время”, пытаться создавать определение производного от него понятия “одновременность”.

В мысленном же эксперименте, доказывающем относительность одновременности, совершается еще одна, теперь уже концептуальная, ошибка - один из рассматриваемых в эксперименте объектов считается безотносительно покоящимся. Поочередный безотносительный покой рассматриваемых объектов, рождает эффект относительности одновременности.

В правильно же поставленном эксперименте, если рассматриваются только два объекта, а в обозримом пространстве нет ни мирового эфира, и нет никаких иных объектов, относительно которых можно было бы один из рассматриваемых объектов считать покоящимся, то в этом случае мы обязаны признать оба объекта либо равноправно движущимися, либо равноправно покоящимися относительно друг друга, что исключает возможность рождения эффекта относительности одновременности.

Не нужно иметь ни сильно богатое воображение , ни могучий интеллект, чтобы осознать, что в мысленный эксперимент Эйнштейна закралась досадная ошибка, которая является достаточным основанием для признания частной теории относительности Эйнштейна целиком и полностью не адекватной объективной реальности.

Отчего же теория, в основе которой заложена такая простенькая, очевидная и многими замеченная ошибка, вот уже сто лет живет и завоевывает умы далеко не глупых людей.

Причин тому несколько. Одна из них заключается в том, что до сих пор нет четких и однозначных определений таких понятий, как “время”, “пространство”, “движение”.

Более двух тысяч лет тому назад Зенон, пытаясь обратить внимание исследователей на серьезность этой проблемы, создал свои знаменитые апории, которые есть не что иное, как формально-логические противоречия, которые Зенон сформировал на основе не адекватных объективной реальности определений некоторых понятий.

“Ахиллес не способен догнать черепаху” потому, что пока Ахиллес преодолевает расстояние между точками их изначального пребывания, черепаха за это время тоже проползет какое-то расстояние, за время преодоления Ахиллесом которого, черепаха вновь окажется в иной точке. И так бесконечно.

Понятно, если Ахиллес будет стремиться в точку, где черепахи уже нет, или вообще никогда не было, то он ее никогда не догонит.

А если понятие “догнать” определить как точку их встречи, как оно в реальности и есть, и направить Ахиллеса в эту точку, то и проблем в описании этой погони не будет, как нет их и в реальности.

В апории “Дихотомия” доказывается, что никакой путь преодолеть вообще невозможно потому, что для того чтобы преодолеть какой-то путь, необходимо прежде преодолеть его половину, а чтобы преодолеть эту половину, нужно преодолеть половину этой половины. И так бесконечно. Поэтому даже начать движение невозможно.

Но если понятие “преодолеть путь” определить как процесс перемещения объекта из начальной точки в конечную, где объект преодолевает половину пути и какие угодно иные его части не “прежде, чем”, а в процессе преодоления пути в целом, то, опять же, проблемы описания процесса движения исчезают.

“Летящая стрела покоится” потому, что если взять такое малое мнгновение, за которое стрела не успела изменить своего пространственного положения, и, следовательно, покоилась, то сумма таких мгновений может родить только покой, но не движение.

Но если понятие “время” вообще и “мгновение” в частности определить не как Ньютон - абстрактная длительность, а как Аристотель - время есть число движения, т.е. время есть последовательность всех тех изменений, которые протекают в Мире, изменяя его. Если любое, даже самое малое, мгновение определяется произошедшими за это мгновение какими-то изменениями образующих Мир элементов, включая и изменение пространственного положения стрелы, то в этом случае получается, что если летящая стрела не изменила своего пространственного положения, то, стало быть, и не было никакого, даже самого малого, мгновения. Нет изменений - нет времени.

В апории “Стадий” Зенон ставит мысленный эксперимент, где время понимается не как последовательность изменений, а как абстрактная длительность, имеющая самую малую и далее неделимую величину - “атом” времени. Пространство понимается не как взаиморасположение образующих Мир элементов, а как вместилище для объектов Мира, также имеющее “атом” пространства.

В эксперименте два объекта движутся мимо третьего в противоположные стороны со скоростями относительно этого третьего объекта в один атом пространства за один атом времени. А это означает, что относительно друг друга они движутся со скоростью один атом пространства за половину неделимого атома времени. Вновь противоречие.

Создающий задачу, знает ее решение.

Зенон знал, что не существует атомов времени и пространства. Знал, что любое мгновение определяется бесконечным количеством изменений, произо шедших за это мгновение с образующими Мир элементами. Знал, что мертвый, абсолютно неподвижный, неизменный Мир есть Мир без времени, что время определяется последовательностью всех изменений, происходящих в Мире и потому понятие “время в собственной системе отсчета объекта” есть такая же нелепица, как и понятие “человечество в отдельно взятой деревне”.

По причине бесконечного количества образующих Мир элементов и их разнообразных соотношений, мы не имеем права предполагать, что Мир когда-либо может стать таким же, каким когда-то уже был. “Нельзя дважды войти в одну и ту же реку”. Так своеобразно Гераклит сформулировал закон необратимой и неповторяющейся последовательности развития Мира, который является абсолютным закон развития как Мира в целом, так и развития отдельных образующих Мир элементов. Поэтому геометрическим аналогом времени является бесконечная прямая, приходящая из бесконечного прошлого и уходящая в бесконечное будущее.

Геометрическим аналогом одновременности является бесконечная прямая, проходящая перпендикулярно прямой времени. Каждой точке прямой одновременности соответствует качественное, количественное и пространственное состояние каждого образующего Мир элемента на данное мгновение, геометрическим аналогом которого является точка пересечения прямой времени с прямой одновременности.

Пространство есть совокупность образующих его элементов (от элементарных частиц, до планет и звезд).

Пространство образовано элементами, а не наполнено ими.

Пространства самого по себе, без образующих его элементов, в объективной реальности не существует точно так же, как не существует погоды без образующих ее атмосферных явлений (ветер, снег, температура …), как не существует ширины и длины без измеряемого объекта.

Пустое пространство так же, как и пустое время с позиции диалектического материализма может иметь место только в виде абстрактного субъективного образа, не имеющего адекватного аналога в объективной реальность.

Проблема понимания теории Эйнштейна, - как, кстати, и апорий Зенона, - не физико-математическая, а чисто философская, и заключается она в адекватном объективной реальности отражении таких базовых мировоззренческих понятий, как “время”, “движение”, “пространство”. В рамках узкоспециальных физико-математических знаний эта проблема неразрешима.

Не адекватное объективной реальности отражение этих понятий рождает в описании этой реальности формально-логические противоречия. Зенон создавал их целенаправленно. В теории Эйнштейна они родились случайно в результате ухода от объективной реальности в мир субъективных абстракций в виде абстрактной четырехмерной системы отсчета пространство-время, которая позволяет совершать ошибки, подобные концептуальной ошибке Эйнштейна.

Объективная же реальность имеет пятимерную гравитационно-пространственно-временную систему отсчета, где пятой мерой является имеющая место быть в любой точке мирового пространства вектор гравитации, показывающий силу и направление гравитационного притяжения главного для данного пространства источника гравитации.

В пятимерной системе отсчета нет места произвольным субъективным представлениям о покое и движении объектов.

Пятимерная система отсчета, построенная на главном для нашей галактики векторе гравитации, который показывает направление гравитационного притяжения находящегося в центре галактики источника гравитации, не дает нам права наряду с правотой Коперника считать правым и Птолемея, как это следует из частной теории относительности Эйнштейна.

Ньютон считал, что объекты в космическом пространстве движутся относительно неподвижного мирового эфира. Но проведенный в конце 19-го века Максвеллом эксперимент по обнаружению эфирного ветра, который, по его мнению, должен проявляться при движении Земли вокруг Солнца, не дал положительного результата.

А в начале 20-го века Эйнштейн выдвинул идею, где пустое пространство, сочетаясь с пустым временем, рождало абстрактную четырехмерную систему отсчета пространство-время, в рамках которой довольно просто решалась в математической форме количественная сторона некоторых процессов, но которая в принципе не могла отражать физику рассматриваемых процессов.

Чтобы поймать льва в пустыне, нужно плоскость пустыни, поставив вертикально, спроецировать в прямую линию. А прямую линию, поставив вертикально, спроецировать в точку. И если в эту точку предварительно поставить клетку, лев окажется прямо в этой клетке.

Видимо, подобного рода простота решения проблем в рамках эйнштейновской абстракции вдохновила большинство физиков и математиков на пропаганду теории относительности Эйнштейна.

Вообще, большинство в науке формируется примерно так же, как и большинство в политике.

Когда политическая партия приходит к власти, большинство тут как тут: чего изволите, за кого голосуем.

Власть в науке это мнение ведущих ученых. И стоит только ведущим ученым сказать: в этом что-то есть, как тут же большинство начинает поддакивать: конечно, кто же этого не знает.

В 1921 - 1925 годах Миллер, предположив, что эфир, захватываясь Земной гравитацией, у самой поверхности Земли становится относительно этой поверхности неподвижным, провел опыты по схеме Майкельсона на высоте 6 тысяч футов.

Эфир был обнаружен.

Но было поздно. Большинство уже не хотело слышать об этих фактах. Большинство уже искало только факты, подтверждающие правильность теории относительности Эйнштейна. И находило их: луч света от звезды, проходя около Солнца, как и предсказывала теория Эйнштейна, искривлялся.

Большинство торжествовало, замалчивая тот факт, луч искривлялся вовсе не так, как должен был делать по теории. Угол искривления луча в период слабой активности Солнца был вдвое меньше предсказанного теорией, а в период высокой активности - вдвое больше. Траектория распространения луча также была гораздо сложнее предсказанной. Нужны были исследования физических причин этих явлений.

Но эйнштейновская абстракция это чисто математическая абстракция, где нет, и в принципе не может быть никакой физики.

Просто пустое пространство. Просто искривляется вблизи гравитирующего тела. Луч света искривляется просто потому, что пустое пространство кривое.

Искать здесь физику все равно, что искать возможность плоскость реальной пустыни спроецировать в реальную точку.

Современная физика в своем терминологическом инструментарии имеет не только абстрактное время, абстрактное пространство, но и абстрактную энергию.

Процесс аннигиляции электрона с позитроном современная физика описывает как исчезновение материи, как превращение материи в энергию в виде не имеющих массу покоя фотонов.

Поразительно! При феноменальнейшем объеме сделанных человечеством за последнее столетие открытий и изобретений - (от робких полетов над поверхностью Земли - до обыденности полетов на другие планеты; от примитивнейших радиоприемников - до лазеров, мобильников и компьютеров; от мичуринских скрещиваний - до генной инженерии и клонирования) - в то же самое время в вопросах осмысления понятий “время”, “пространство” и “энергия” мы остаемся на уровне Митрофанушки, который, как известно, понятие “дверь” считал не существительным, а прилагательным, потому, что дверь “прилагается” к косяку.

Пора, наконец, понять, что время, пространство и энергия “прилагаются” к материи в виде НЕОТЪЕМЛЕМЫХ ее свойств, и потому сами по себе, без своих материальных носителей, в объективной реальности не существуют.

Поэтому время не может замедляться, пространство не может искривляться, а энергия не может распространяться в виде нематериального фотона.

В попытке спасти частную теорию относительности, любители абстракций выдумали термин “время в собственной системе отсчета объекта”, утверждая, что здесь имеется в виду не абстрактное, пустое время, а конкретные протекающие в этой системе отсчета процессы, которые замедляются при движении системы.

Но это “изобретение” лишь обнажило заложенную в теории абсурдность, которая была менее очевидна, когда время было представлено в виде самостоятельной абстрактной сущности.

По теории, замедление времени может иметь место как в движущейся системе отсчета, так и вне ее, если наблюдатель считает ее покоящейся.

Так что, вопрос - кто же из братьев-близнецов в результате окажется старше, если результат зависит исключительно от субъективной точки зрения наблюдателя, оказался для частной теории относительности абсолютно тупиковым вопросом.

Кстати, для истинного физика, вопрос - где происходит замедление процессов, является гораздо менее интересным, чем вопрос - почему это происходит. Почему, к примеру, происходит замедление процесса распада мезонов.

Поразительно, но любителей абстракций этот вопрос, похоже, совсем не интересует.

Да это и понятно, ведь в рамках пустого пространства и этот вопрос превращается в абсолютно тупиковый.

Да и разве только он.

* Как формируются волновые свойства элементарных частиц?

* Что является средой распространения электромагнитных волн?

* Как осуществляется гравитационное взаимодействие тел?

* Как объясняется звездная аберрация?
* Почему траектория свободно падающего на поверхность Земли тела искривляется по направлению суточного вращения Земли?

* Как объяснить отрицательный результат опыта Майкельсона по обнаружению эфира, проводимого на поверхности Земли, и положительный результат опыта Морли, проводимого на высоте 6000 футов над поверхностью Земли?

* Почему величина угла искривления луча света, проходящего от звезды мимо Солнца, зависит от активности Солнца?

* Исчезновение материи с позиции диалектического материализма есть явление в принципе невозможное. Как в этом случае описать процесс аннигиляции электрона с позитроном?

* Что оказывает сопротивление движению элементарных частиц в вакуумном пространстве ускорителей?

Ни на один из поставленных вопросов современная (официальная) физика не способна дать вразумительного ответа.

И главной причиной такого печального положения дел является то стратегическое направление развитие фундаментальной физики, которое было определено Эйнштейном и поддержано большинством научного сообщества.

И этому большинству теория Эйнштейна нравится.

Нравится своей экстравагантностью (замедление хода времени, собственное время объекта)

Нравится своими парадоксами (парадокс близнецов, парадокс волна-частица). Нравится даже тем, что бросает вызов здравому смыслу.

Нравится потому, что это большинство имеет возможность ощутить себя членами интеллектуального элитного клуба: только им - умным - дано видеть “новое платье короля”.

Простым смертным, разумеется, не дано понять, как же может искривляться и замедляться то, чего не существует в объективной реальности как самостоятельной сущности.

Не дано понять того, что если увеличение продолжительности жизни мезонов можно объяснять замедлением хода времени в собственной системе отсчета мезонов, отчего же катастрофическое уменьшение средней продолжительности жизни россиян в наши дни нельзя объяснить ускорением хода времени в российской собственной системе отсчета.

Но никакие, даже убийственно точные и логичные, аргументы не способны переубедить большинство. Потому, что никто и никогда из клуба высоких интеллектуалов добровольно не переходил в клуб с противоположным названием.

Поэтому надежда только на молодежь, обращаясь к которой в духе Козьмы Пруткова, хочется сказать: зри в корень, то бишь в определение понятий, и ты отчетливо увидишь “наготу короля”.

В заключение хотелось бы еще сказать, что наука развивается не большинством. Наука развивается одиночками, которые нацелены не на поддакивание начальству, не на собственное благополучие, не на чины.

Они нацелены на истину.

И в фундаментальной физике они есть.

И разрабатывая свои гипотезы, объясняя многое из того, что не способна объяснить официальная физика, сетуя на то, что не могут объяснить всех загадок микромира, они понимают главное: какие бы сложности ни ожидали фундаментальную физику на пути признания факта существования эфира образованного неизвестными нам пока материальными частицами, этот факт, тем не менее, мы обязаны признать, потому, что другого пути развития физики в рамках диалектического материализма просто нет, и в принципе быть не может.

Иные «мудрецы», пытаясь решить проблему Эйнштейна-Зенона, утверждают, что определение понятий – вовсе не главная задача, главным является раскрытие сущности явления.

Это мнение рождается непониманием термина «определение понятий», который как раз и предполагает не только раскрытие сущности явления, но и создание логико-терминологического аппарата, посредством которого описывается эта сущность. Без создания логико-терминологического аппарата раскрытая исследователем сущность явления останется достоянием только данного исследователя, и не сможет превратиться в общеизвестный факт общественного сознания.

Литература

1. Брусин Л.Д., Брусин С.Д. Иллюзия Эйнштейна и реальность Ньютона. Москва, 1993г.

2. Горбацевич Ф.Ф.
3. Краснояров В. Изобретатель и рационализатор, № 7, 1990г.

Публикации по теме