Световод своими руками в домашних условиях. Туннельный фонарь — освещаем темные места дома с помощью световодов. Метод торцевого свечения

Световые фонари – строительные элементы здания, который предназначенный для освещения помещений солнечными лучами и снижения зависимости от искусственного освещения.

Особенно световые фонари применяют в тех помещениях, где естественное освещение через окна минимальное (или отсутствует), и есть возможность прокладки через нежилой чердак светового туннеля. С помощью светового фонаря туннельного типа можно обеспечить естественное освещение комнат и помещений внутри дома, которые не имеют окон (например, ванна, туалет, гардеробная, кладовка, коридор, фото 1 ).

Фото 1. Световоды туннельного типа

Световой фонарь: где применяют, принцип работы, из чего состоит, маркировка

Световые фонари называют по разному – «световоды», «световые колодцы», «световые туннели», система SDS (Solatube Daylighting System).

Световоды в последнее время набирают популярность, так как обладают не сложной конструкцией и достаточно высокой эффективностью. Так, световой туннель VELUX (Lovegrove) в пасмурную погоду пропускает через себя до 440 люмен (430 люмен – 40Вт лампа накаливания), а в солнечную погоду – 2800 люмен, фото 2 . Один световой фонарь туннельного типа может освещать помещение площадью 9 м 2 .

Фото 2. Световой туннель производства VELUX

В наше время световоды представляются такими производителями: ALLUX, VELUX, Fakro, Solarspot и пр.

Световоды могут устанавливаться как в вертикальном, наклоном положениях (кровля с углом от 15° до 60°), так и в горизонтальном положении (стены).

На фото 3 представлены варианты установки световых туннельных фонарей.

Фото 3. Варианты установки светового туннеля

Туннельные световые фонари разных производителей могут отличаться в некоторых элементах конструкции, но в целом состоят из:

  • внешний элемент – располагается на поверхности крыши (обычно наклонной) и собирает лучи дневного света. Внешний элемент представляет собой полусферу или сферический купол, собирающий лучи света с помощью установленных линз Фринеля. Габариты верхнего элемента круглой формы диаметром 0,25 м, 0,35 м и 0,53 м (бывают и другие размеры), вся внешняя часть обычно имеет размер 0,47×0,47 м и больше. Выше приведенные круглые внешние элементы способны осветить площадь помещения в 14, 24 и 40 м 2 соответственно (при высоте помещения 2,4 м);
  • внутренний элемент – рассеивает и равномерно распределяет солнечные лучи в помещении.

Внешние и внутренние элементы соединяются туннельными трубами , которые бывают жесткими или эластичными (обычно диаметр 0,35 м, длиной до 2 м, при использовании дополнительных соединительных элементов можно удлинить до 6 м).

Принцип работы светового туннеля

Принцип работы светового фонаря туннельного типа очень простой: внешний элемент собирает солнечные лучи и по отражающим внутренним поверхностям туннельной трубы передает их на внутренний элемент, который и рассеивает в комнате лучи света. Внутренняя поверхность труб покрыта слоем алюминия и дополнительно состоит из 400 слоев специальной отражающей пленки (отражающая способность – 99,7%). Такая поверхность способна собирать огромное количество лучей не только в пасмурную погоду, но и даже ночью от излучения Луны и городского освещения.

При прокладке фонаря следует помнить, что чем длиннее туннельная труба и чем больше изгибов, тем больше светопотерь:

  • на каждом изгибе потери составляют 10…40%;
  • на каждом метре трубы потери составляют 20…40%.

Для получения максимального эффекта освещения с помощью туннельного фонаря необходимо устанавливать туннельную трубу следующей длины:

  • жёсткая труба в пределах 0,9…6,0 м;
  • гофрированная труба 0,4…2,0 м (гофрированную трубу невозможно удлинить).

Из чего состоят световые фонари?

Более подробную структуру световодов рассмотрим на примере системы световодов ALLUX и VELUX. Световод системы ALLUX состоит из (фото 4 и 5 ):

  • купола (приемника светового излучения);
  • кровельного блока;
  • зеркальной трубы или световода (светопроводящий канал, который передает световые лучи за счет их отражения от поверхности трубы;
  • рассеивателя (светораспределяющее устройство).
  • дополнительных компонентов (фото 6).

Фото 4. Устройство световода туннельного типа производства ALLUX: а) общая схема; б) купол

Фото 5. Конструкция световода ALLUX: а) кровельный блок; б) рассеиватель; в) жесткая туннельная труба; г) гофрированная туннельная труба

Фото 6. Дополнительные компоненты туннельного световода: а) стеклопакет, с повышенными теплоизоляционными свойствами; б) колено световой трубы; в) светильник электрический (дополнительная функция); г) диммер («Выключатель» - затемняющая шторка, которая устанавливается внутри световой трубы); д) защитная крестовина «Антивор»

Купол выполнен из поликарбоната или закаленного стекла, которые обладает неизменными светопроводящими свойствами и высокой ударной прочностью, фото 4б .

Особенности купола:

  • особая форма и материал купола позволяет не проводить дополнительной очистки поверхности. Для очистки поверхности достаточно дождя.
  • максимальный сбор солнечных лучей происходит утром и вечером, а также в пасмурную погоду.
  • купол является защитой от УФ-лучей.

Кровельный блок – это алюминиевая деталь световода, предназначенный для соединения купола до кровли и обеспечения надежной гидроизоляции, фото 5а .

Рассеиватель , еще называют световой диффузор – предназначенный для равномерного распределения и мягкого рассеивания солнечных лучей по всему помещению. Рассеиватель изготовленный из двойного поликарбоната, фото 5б .

Световод ALLUX (зеркальная труба) предназначен перенаправлять попадающие лучи на купол к рассеивателю, а затем и в помещение, фото 5, в, г . Такая рассеивающая способность световода обеспечивается за счет зеркальной внутренней поверхности. Производителем ALLUX выпускается в двух вариантах:

  • световод ALLUX Plus (материал алюминиевый, жесткий, внутри серебренное напыление), фото 5в ;
  • световод ALLUX Flexi (в виде гофры, мягкий), фото 5г .

Преимущества применения разного типа световода:

Маркировка светового туннеля

Световой туннель VELUX имеет несколько разновидностей, которые маркируются так, фото 7 :

  • TWF – световой туннель с гофрированной трубой, имеет также встроенный гидроизоляционный оклад для монтажа в профилированное кровельное покрытие (металлочерепица, композитная черепица);
  • TLF – световой туннель с гофрированной трубой, имеет также встроенный гидроизоляционный оклад для монтажа в плоское кровельное покрытие (битумная черепица, фальцевая кровля);
  • TWR – световой туннель с жесткой туннельной трубой, для профилированных кровельных покрытий (металлочерепица, композитная черепица);
  • TLR – световой туннель с жесткой туннельной трубой, для плоских кровельных покрытий (битумная черепица, фальцевая кровля).

Фото 7. Разновидности световодов туннельного типа: для профилированных кровельных покрытий (слева) и для плоских кровельных покрытий (справа)

Преимущества применения световых туннельных фонарей

  1. Простота установки и небольшой объем работ по монтажу.
  2. Экономия электроэнергии, которая расходуется на дополнительное освещение помещения (до 60% на освещение помещений дома).
  3. Возможность обеспечения дневным освещением помещения без окон.
  4. Высокая долговечность (гарантия производителя 5 лет).
  5. Световые окна фонаря не пропускают тепло в помещение летом и холод зимой.
  6. Не потребляет электроэнергии в ходе эксплуатации (при прямом назначении, без дополнительных функций),
  7. Простота в обслуживании.
  8. Возможность регуляции освещения.
  9. С помощью фирменных аксессуаров доукомплектации световой туннель может иметь функцию проветривания, а также использоваться в качестве светильника в ночное время.

Недостатки применения световых туннелей

  1. Не очень высокая эффективность в районах с коротким световым днем.
  2. В зимних условия возможна вероятность покрытия снежным покровом, что на время приводит к прекращению подачи световых лучей в помещение.

На фото 8 представлены примеры световых туннелей, которые успешно эксплуатируются.

Фото 8. Примеры использования световых туннелей

Публикацию подготовил – эксперт

Конев Александр Анатольевич

Что сделана своими руками стоит около $ 200, а по виду намного лучше! Кроме того люстра управляется пультом дистанционного управления и может быть успешно использована для информационного оповещения.

Примечание : Иногда фотографии не совсем совпадают с тем, что описано в шаге.

Шаг 1: Оборудование и инструменты

  • Листы черного плексигласа размерами 50*50 см и толщиной 4-6 мм .
  • 200 стеклянных шариков диаметром 1,7см ;

  • 3 Вт RGB светодиоды с дистанционным управлением;
  • Пластиковый контейнер;

  • Термоусадочные трубки;
  • ИК-приемник;
  • Эпоксидный клей;

  • Цепь;
  • Переходной патрубок;
  • 120 м волоконно-оптического кабеля;

  • Провода;
  • Клейкая лента;
  • Чёрная краска;

  • Винты;
  • Трёх контактная электрическая вилка/розетка;
  • Цоколь от лампы.

Инструменты :

  • Шлифовальный диск;
  • Дрель и свёрла;
  • Горячий клеевой пистолет;
  • Гравёр с насадкой;
  • Пила;
  • Электролобзик;
  • Лак и кисти для краски;
  • Ножовка;
  • Рубанок;
  • Циркуль;
  • Тиски;
  • Пластилин;

Шаг 2: Деревянное основание верхней части — часть 1

С помощью циркуля начертим круг радиусом 225 мм . Затем с помощью ножовки вырежем его.

Края круга отшлифуем дисковой шлифовальной машинкой.

Для завершения декорирования, окрасим верхнюю сторону в чёрный цвет (в три слоя).

Электроника :

Вырежем отверстие достаточно большого диаметра для размещения трёхконтактной розетки.

Затем закрепим её саморезами.

Установим пластиковую коробку на деревянный круг. Просверлим отверстия для четырех коротких 7 мм винтов.

Соединим провода от блока питания с цоколем лампы.

На фото не учтен тот факт, что лампа светильника находится в пластиковой коробке. Так как эти фотографии были сделаны после того, как проект был закончен.

Шаг 3: Деревянное основание верхней части — часть 2

Возьмём цепочку и разрежем её на три секции, каждая из них в длину составляет 25 см.

В деревянном основании, просверлим три отверстия в 20 см от центра. Эти отверстия, если правильно просверлить, то получится равносторонний треугольник.

Вставим шпильку с ушком (с шайбой на верхней и нижней части) в просверленное отверстие и затянем гайкой.

Расположим концы цепей в каждой петле.

Противоположные концы установим в карабины.

Подвесной механизм готов.

Опорные стойки будут поддерживать пластины из оргстекла.

Используем рубанок и наждачную бумагу, чтобы сделать поверхность бруска гладкой.

Нанесём лак на опорные части для их дальнейшей защиты их от влаги.

Сделаем отметки на бруске через каждые 7 см (в общей сложности 42 см), а затем разрежем заготовку на 6 частей.

Теперь расположим по линиям шесть брусочков в форме шестиугольника на пластинах плексигласа между 3 и 4 кольцом.

Последнее фото единственная картина, которая точно показывает, как все опоры должны выглядеть в конце всех проделанных операций.

Шаг 4: Пластина плексигласа — часть 1

Начертим циркулем круг радиусом 225 мм .

Используем лобзик, чтобы вырезать круг и шлифовальный станок для зачистки кромок.

Теперь необходимо разделить заготовку на пять колец. Они разделят люстру, создавая многоуровневые переходы.

Разметка заготовки:

  • Начертим первый круг диаметром 205 мм , слегка поцарапав окружность, затем наведём контур карандашом;
  • Второй круг – радиусом 160 мм;
  • Третий круг – радиусом 115 мм;
  • Четвертый круг – радиусом 70 мм ;
  • Пятый круг – диаметром 50 мм.

Ширина между отметками на кругах составляет 20 мм .

Шаг 5: Пластина плексигласа — часть 2

Окружность пятого кольца = диаметр (5 см) х π = 15.7 см. (Округляем число, чтобы избежать какой-либо ошибки при работе с инструментами).

Диаметр каждого стеклянного шарика 1.7 см . Поэтому: 15.0 / 1.7 = 8 шт . В кольце использовалось 7 шариков для создания небольшого зазор между каждым элементом.

Повторяем подобную процедуру для каждого кольца, убедившись, что оставляем необходимый зазор между шарами.

Настало время, чтобы сделать отметки на кольцах, где будет располагаться шарики.

Для этого (в качестве примера рассматривается пятое кольцо) возьмём 7 стеклянных шариков, пластилин и прикрепим шарики к заготовке. После этого обведём их контур карандашом.

Убедимся, что карандаш находился перпендикулярно основе. После этого отметим центры, будущих отверстий.

Повторим эту процедуру для остальных четырех колец.

После того, как все места отмечены, с помощью сверла 0,5 мм просверлим отверстие.

Шаг 6: Световая коробка

Источник света и приемник находятся внутри коробки.

Отметим центр в торце пластиковой коробки. Просверлим отверстие такого же сечения, как диаметр цоколя. Установим трубный переходник на противоположный конец коробки.

Теперь установим ИК-датчик на предварительно существующий терминал. (Прошу прощения нет фотографии).

Нарежем три провода длиной по 20 см каждый.

Зачистим концы проводов.

Подключим один провод к отведению на уже существующий ИК-датчик

Закроем соединение термоусадочной трубкой, а затем закрутим проволокой (не требуется пайка).

Прикрепим соответствующие провода на ИК-датчик и применим термоусадочные трубки.

Установим лампу в световой короб и закроем его. Теперь можем прикрутить световой ящик на деревянную основу с помощью винтов и направляющих отверстий, которые были сделаны ранее.

Шаг 7: Монтируем шарики

В этом шаге будем использовать гравёр с шаровидной насадкой.

Изготовим кондуктор, который будет удерживать шарики (два зажима крепятся к древесине). Вся конструкция очень устойчивая, кроме того позволяет свободно работать с инструментами.

Повторим процедуру 180 раз!!! Да, я знаю, что это займет больше всего времени, но будьте терпеливы, даже когда некоторые из них будут ломаться …

Шаг 8: Режем оптоволокно

Существует 5 уровней оптоволокна.

Используя сантиметр и ножницы, нарежем волокно в соответствии с таблицей:

  • 7x — 75 см нити + 10 см = 85см каждый;
  • 21x — 60см нити + 15см = 75см;
  • 35x — 45см нити + 20 см = 65 см;
  • 50x — 30см нити + 25см = 55см;
  • 64x — 15см нити + 30см = 45см.

ВНИМАНИЕ!: Это длина каждого волокна вместе с шариком. Для того чтобы каждый слой подключался к световой коробке вы должны добавить дополнительную длину к оптоволокну для монтажа его систему.

Шаг 9: Устанавливаем нити

Соберём пучки. Например, 7х 85 см или 50x 55cm соединим с помощью термоусадочной трубки, чтобы держать их вместе. Повторим эти действия для всех остальных групп.

Возьмём 7x 85см нити и каждую прядь пропустим через отверстие на внутреннем кольце нижней пластины.

Вы должны протянуть все нити через одно отверстие! Это позволит гораздо лучше пропускать свет и монтировать нити в закрытый корпус.

Чтобы сделать равномерный срез торца, нагреем шпатель паяльной лампой до тех пор, пока он не будет достаточно горячий для плавки волокон.

Шаг 10: Устанавливаем шарики

Для крепления необходимо использовать эпоксидную смолу, а не супер клей.

Установим волокна в отверстие и прижмём всё лентой, чтобы сделать маленькую колыбель для шарика. Колыбель должна «обнять» шарик и принимая на себя вес стекла, давая, таким образом клею высохнуть. Рекомендую обмотать вторым слоем ленты, чтобы избежать шанса потери жесткости.

Окончательный эффект заключается в том, что вы не видите клея, волокно волшебным образом касается стекла если смотреть снизу и сбоку.

Шаг 11: Базовые украшения

Куски плексигласа длинной 303 мм , разделим на 3 части и разрежем ленточной пилой, ширина их составляет 30 мм .

Разделим квадраты на 3 равные части

Используем пилу, чтобы вырезать эти прямоугольники

Снимем бумагу из плексигласа

Прикрепляем пластины с помощью суперклея на деревянную основу, используем угольник для точного выравнивания.

Повторим эту процедуру для всех 47 штук.

Шаг 12: Конечный результат

Вот такая получилась необычная поделка

Вопрос: «Можно ли сделать светодиод своими руками?» среди рядовых мастеров наверняка вызовет удивление. Казалось бы, зачем придумывать то, что давно придумано и серийно выпускается? Однако существует такая категория людей, которые обожают мастерить что-то необычные. Для них конструирование светодиода – это возможность повторить эксперименты О.В. Лосева, проводимые около ста лет назад, и шанс доказать себе и друзьям реальность создания светодиода в домашних условиях.

Что понадобится

Основной конструкционный материал – кусочек карбида кремния. В обычном магазине его не купишь, но если постараться, то можно найти в интернете среди частных объявлений. Кроме него понадобится иголка от булавки, соединительные провода, два мебельных гвоздя с широкой шляпкой и регулируемый источник напряжения (0-10 вольт). Также понадобится припой и немного умения пользоваться паяльником. Для измерений параметров самодельного светодиода подойдет простой мультиметр.

Подготовительная работа

Первым делом нужно найти участок на поверхности карбида кремния, способный к излучению света. Для этого исходный материал придётся раздробить на несколько кусочков размером 2-5 мм. Затем каждый из них поочередно кладут на металлическую пластинку, подключенную к плюсу источника питания напряжением около 10В. Вторым электродом выступает острый щуп или игла, присоединённая к минусу источника питания.

Затем исследуемый кусочек нужно прижать пинцетом к пластине, и острой иглой прощупать его верхнюю часть в поисках светящегося участка. Таким образом, отбирают кристалл с наибольшей яркостью. Стоит отметить, что карбид кремния может излучать свет в спектре от оранжевого до зелёного.

Изготовление светодиода

Для удобства монтажа лучше взять гвоздик длиной 10-15 мм с большой шляпкой и хорошо её залудить. Она послужит основанием и теплоотводом для кристалла. С помощью паяльника олово на шляпке доводят до жидкого состояния и пинцетом слегка утапливают подготовленный экземпляр карбида. Естественно, что излучающий участок должен быть направлен вверх. После затвердевания припоя нужно убедиться в надёжной фиксации кристалла.

Для изготовления отрицательного электрода понадобится острая часть булавки и одножильный медный провод. Как видно из фото, обе детали лудятся и надёжно спаиваются между собой. Затем на проволоке делают петлю для придания ей свойства пружины. Свободный конец провода запаивают на шляпку второго гвоздя. Оба гвоздика прикрепляют к монтажной плате на небольшом расстоянии друг от друга.

На заключительном этапе к ножкам гвоздей подводят питание соответствующей полярности. Замыкается электрическая цепь иголкой, которую фиксируют в точке кристалла с максимальным свечением. Плавно наращивая напряжение питания, можно определить значение, при котором яркость перестаёт интенсивно нарастать. В результате проведенных измерений падение напряжения составило 9В, а прямой ток 25 мА. При смене полярности карбид кремния перестаёт излучать свет, что частично объясняет его полупроводниковые свойства.

Не удивлюсь, если радиолюбители со стажем выскажут свой негатив в адрес получившейся необычной конструкции, напоминающей простейший светодиод. Однако иногда собирать подобные вещи самостоятельно – это интересно и даже полезно. Примером служат радиолюбительские кружки для школьников, в которых дети знакомятся со свойствами разных материалов, учатся паять и познают азы полупроводников.

Читайте так же

Многие зададутся вопросом - зачем делать светодиодную люстру своими руками, если такую вещь можно купить в магазине?
Отчасти этот вопрос действительно справедлив. Существуют недорогие китайские люстры, которые легче приобрести в готовом виде т.к. выигрыш в цене от самодельного изготовления такой вещи будет всё равно не таким уж существенным.

Однако совсем по-другому обстоят дела с дорогими большими моделями, такими, какие вы можете увидеть в хороших ресторанах, отелях или театрах. Их цена чаще всего лежит в диапазоне от 60 000 рублей и более. Во многих случаях эта сумма может оказаться неподъёмной. В то же время себестоимость такого изделия вполне может уложиться в 3000 - 6000.

Кроме того, возникают ситуации, когда для оформления интерьера требуется абсолютно индивидуальный подход, и ни одна покупная стандартная модель просто не будет смотреться.

В общем, иногда делать люстру самому может быть очень выгодно.

Сегодня мы рассмотрим небольшой пример, целью которого не являлось сделать шедевр. Нам просто хотелось бы показать несколько интересных практических приёмов в этом вопросе. Зная их, вы можете придумать свой интересный дизайн и воплотить его в жизнь.

Итак - нам потребуется:
1) Пластина оргстекла чёрного цвета 50см на 50 см
2) Штук 200 прозрачных стеклянных шариков
3) Ргб светодиоды
4) Контроллер для светодиодов
5) Термоусадка
6) Блок питания
7) Клей
8) Оптоволокно
9) Лист фанеры
10) Изолента, розетка и ряд других мелочей, список которых напрямую зависит от вашей задумки.

Первым делом разметим на фанере основу нашей люстры. В рассматриваемом случае это будет круг. Аккуратно вырезаем его, монтируем туда розетку и подключаем блок питания. В нашем случае мы использовали розетку аналогичную той, что имеется на обратной стороне системного блока компьютера. Этот выбор, по сути, ни чем не обусловлен - вы можете использовать любой другой вариант.



Затем делаем крепление для нашей люстры и отрезаем цепочки нужной длины, висеть она будет именно на них. Вырезаем второй фанерный круг и очень ровный круг из орг стекла, так чтобы он был миллиметров на 5 побольше, чем фанерный. Затем мы соединим их воедино. Этот шаг нужен, чтобы укрепить орг стекло, которое не рассчитано на нагрузки.

Теперь мы имеем один фанерный круг и одни двухслойный (фанера + оргстекло). Это основа нашей люстры.


Соединим эти 2 уровня небольшими аккуратными дощечками, чтобы получилось некоторое подобие цилиндра.






Размечаем круг концентрическими окружностями, обозначив тем самым контуры, где будут расположены шарики.

Насверливаем небольшие дырочки там, где будут находиться центры шариков.




Теперь нужно собрать коробочку в которой свет от РГБ светодиода будет переходить в оптоволокно. В примере мы использовали 12 Вольтовый светодиод, однако в реальной жизни мы бы посоветовали поставить 4 последовательно подключенных РГБ светодиода на 3 Вольт. Подключаем к светодиодам контроллер.

В качестве зажима для оптоволокна используем пластиковый фитинг.


Приступаем к подготовке шариков, в каждом из которых следует просверлить не сквозное отверстие приблизительно до центра. Это непростое дело, требующее довольно много времени. Лучше всего воспользоваться дремелем. Также важно продумать вопрос крепления шарика в процессе сверления.


Главной особенностью нашего проекта является использование оптоволокна. Именно им далее и займёмся. Очень аккуратно нарезаем волокно.
ВНИМАНИЕ! Учитывайте тот факт, что помимо длины волокна от шарика до оргстекла должен быть некоторый запас на подключение к светодиоду.

В нашем случае размеры получились следующие

7 нитей 75см + 10 см = 85см
21 нить 60см + 15 см = 75 см
35 нитей 45см + 20 см = 65 см
50 нитей 30 см + 25см = 55см
64 нити 15 см + 30 см = 45см





Собираем оптоволокно в пучок, надеваем на конец термоусадочную трубку, упираем пучок в стол (в результате все волокна будут на одном и том же уровне), нагреваем термоусадку так, чтобы она плотно сжала волокна друг к другу. Получается как бы «метёлка» с ручкой. Закрепляем сжатый термоусадкой конец в фитинге и разводим волокна по просверленным в орг стекле дырочкам.

Налейте немного клея на бумажку, обмокните в него зубочистку и аккуратно обмажьте отверстие в шарике. Вставьте туда волокно и временно закрепите соединение скотчем. Дайте немного времени, чтобы всё застыло. Проверьте прочность соединения. Важно исключить возможность того, чтобы шарик отвалился.


Подвешиваем люстру вместе с шариками и аккуратнейшим образом регулируем длины волокон для каждого шарика. Нужно достичь того, чтобы шарики висели идеально на запланированном уровне. Закрепляем правильное положение оптоволокна термоклеем.

Затем делаем бока для нашего цилиндра.



Всё! В итоге мы имеем оригинальную люстру со светящимися шариками, которые могут менять свой цвет в зависимости от нажатой вами кнопки на пульте. Также в вашем распоряжении окажется множество любопытных эффектов.











Эта идея кажется нам очень перспективной и имеет несколько расширений, например:

Очевидно, что в описанной выше схеме обычным светом она не светит и может быть лишь элементом декора. Но никто не мешает Вам сделать самостоятельно боле полную версию, добавив в неё обычные белые светодиоды.

Можно сделать так, чтобы внешние кольца шариков светились одним цветом (например, красным), а внутренние были с управляемым цветом. Получится очень красивая разноцветная люстра. В этом случае вам потребуется сделать несколько фитингов, в каждый из которых будет светить свой цвет.

В общем, данный подход предоставляет по настоящему широкое поле для манёвра!

Сегодня будет научно-познавательный пост:)

К счастью, в этот раз была не авария, а плановые работы, поэтому процесс проходил, можно сказать, в тепличных условиях.

Обычно оптический кабель разваривается на специальный кросс, каждое волокно на свой порт, откуда уже коммутируется с оборудованием или другим кроссом. Но в этот раз надо было сварить между собой два кабеля в обход оптических кроссов. Процесс, в общем-то, схож со сваркой кабеля при разрыве, за тем исключением, что кабель не надо сначала вытаскивать из кросса.

Вот так выглядят два рабочих оптических кросса, от которых надо будет избавиться и состыковать кабели напрямую. Сейчас пока данные бегают по желтым патч-кордам между кроссами.

Оптический кросс изнутри. Аккуратно распутываем и вытаскиваем кабель из кассеты.

Цветные проводки - это оптоволокно из кабеля, только пока в изоляции. Само оптоволокно бесцветное, а изоляцию специально делают цветной, чтобы различать волокна.

Волокон в кабеле может быть много. Может быть и 4, и 12, и 38. Как правило, для передачи данных используется пара волокон, по одному волокну в каждом направлении. По такой одной паре может передаваться от 155 Мбит/с до нескольких десятков Гбит/c, в зависимости от оборудования на концах волоконно-оптической трассы.

В этом кабеле 12 волокон, которые упакованы по 4 штуки в 3 цветных (белый, зеленый, рыжий) модуля.

Поскольку место сварки волокна - потенциально ломкая зона, эту часть кабеля упаковывают в оптическую муфту. Перед сваркой кабели заводят в муфту через специальные отверстия.

Теперь можно приступить к процессу сварки. Сначала с волокна при помощи точных инструментов снимается изоляция, и обнажается сам оптоволоконный стержень.

Перед сваркой нужно, чтобы торец волокна был максимально ровным, т.е. необходим очень точный перпендикулярный срез. Для этого есть специальная машинка.

Чик! Угол скола должен отклоняться от плоскости не более, чем на 1 градус. Обычные значения - от 0,1 до 0,3 градуса.

Обрезки чистого волокна тут же прибираются. На столе его фиг потом найдешь, а под кожу оно запросто может впиться, там обломиться и остаться.

А вот и самый главный аппарат в этом процессе - сварочник. Оба волокна укладываются в специальные пазы в середине аппарата с двух сторон (на картинке - голубого цвета), и фиксируются зажимами.

После этого самое сложное. Нажимаем кнопку "SET" и смотрим на экранчик. Аппарат сам позиционирует волокна, выравнивает их, кратковменной электрической дугой мгновенно спаивает волокна и показывает результат. Весь процесс происходит быстрее, чем я написал эти три предложения выше, и занимает секунд 10.

На волокно одевается термоусадочная трубочка с металлическим стержнем, чтобы укрепить место сварки, и волокно помещается в печку в том же самом аппарате, только уже в верхней его части.

Каждое волокно затем аккуратно укладывается в кассету муфты. Творческий процесс.

И результат.

Для герметизации места ввода кабеля в муфту одеваются термоусадочные трубки, которые обрабатываются специальным феном. Трубка от высокой температуры сжимается, препятствуя доступу воды и воздуха в муфту.

И последний штрих. На муфту одевается колпак и фиксируется специальными застежками. Теперь не страшна ни влажность, ни жара, ни мороз. Такие муфты могут годами плавать в болоте без ущерба для кабеля внутри.

Весь процесс сварки двух 12-волоконных кабелей вместе занимает около полутора часов.

Ну вот, теперь вы знаете все тонкости этого процесса, можно смело покупать аппарат для сварки и опутывать оптоволоконными сетями все, что вам вздумается.

Публикации по теме